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Ahsfn~Z Reaction of cyclic sulfites or carbonates of y,d-dihydroxy (E)-@-enoates with R,Cu(CN)Li,, B F,; 
RCu(CN)Li. BF, (R - Me-.n-Bu-) afforded either diastemoselective S,.,2 ’ products or reductive elimination 
product depending on reaction conditions. Addition of R,Cu(CN)Li, BF, (R - Me-. n-Bu-) to cyclic sulfite 
(I) or cyclic catbonate (3) (inverse addition) afforded highly regio-. (E)-stereo- and diastemoselectively tr- 
alkylation products (6 and 8). By using this methodology, (2S, SS)-P?ms-2-methyl-S-hexanolide, the 
pheromone of the carpenter bee Xylocopa hirutiss~ma was synthesized. 

The. enantio- or diastemoselective a-alkylation of ester is a useful reaction in organic synthesis. Recently, 
much attention has been paid to the introduction of alkyl groups at cw-position of esters stereoselectively 
using chhai metal enolates,2 chiml oxazclines,’ asymmetric hydrogenation,’ and asymmetric sigmatropic 
rearmngements such as Claisen-’ and Ireland-Claiser? rearrangements. Efficient regio-. (E)-stereo-, and 
diistemoselective y-alkylation by the chhality transfer reactions of y-mesyloxy (E)-ol,p-enoates have been 
developed by Ibuka and Yamamoto.’ We have explored the reaction of organocopperreagents with cyclic 
sulfites or carbonates of y,&dihydroxy (I?)-r&p-unsaturated esters and found that either highly diastereo- 
selective S,,2 ’ products or reductive elimination products could be obtained depending on reaction conditions 
(Scheme I). 
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Scheme 1 

The results of the reactions of organocopper reagents with cyclic sulfites or carbonates of y&dihydroxy 
(E)-c$-enoates arc summarized in Table 1. The cyclii sulfite of y,&dfhydroxy @)-o$-enoate 1 was readily 
prepa& from 44>-benzyl-2,3o Gopropylidene-L-threhteoseg derived from ~-tar&c acid. Addition of the cyclic 
sulfite 1 to Mr;Cu(CN)Li,(3 equiv); BFiOEh(3 equiv) in THF at -78 “C led to the c&kylated product 6” 
(42%) and the reductive elimination product 7” (48%) (entry 1). However, addition of MqCu(CN)Li, (3 
equiv); B Fi OE&(3 equiv) to the cyclic sulfite 1 (inverse addition) afforded the. ~+methylated ester 6, the S,2 ’ 
addition PKXIUC~. as the sole product (entry 2). The (~4+stereochemistry was judged by ‘H NMR and the 
diasmmoselection has been found to be almost exclusive (>99%) by ‘H NMR analysis with Eu(hfc), 
shift reagent This method appears to be a superior 1.3~chhality transfer to form a new chirai center. It is 
worthwhile noting that addition of ti cyclic sulfite 1 to MqCu(C!N)Li~f equiv); BF; OBt, (6 equiv) 
afforded the f&.,2 ’ addition product 6 (73%) as the major product and the reduction product 7’* (16%) as 
the minor product (entry 3). 
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This diistereoselective S,2 ’ alkylation was also carried out with (n-Bu)@r(CN)Li,; BF, andn-BuCu(CN)Li; 
BF, (inverse addition) (entries 4 and 5). For the sulfite 2, treatment with the higher order cupmte 
(n-Buj$u(CN)Li,; BF, yielded 9, which was utilixed to introduce a quarternary carbon center at the or-position 
of the ester group with high optical purity (entry 6). In contrast to the case of tile sulfite 1 (entry 2). for the 
carbonam 3, the reaction with MqCu(CN)Li,; BF, (inverse addition) gave 6 and 7 (entry 7). On the other 
hand, addition of @Bu),Cu(CN)Li,; BF, to the carbonate 3 (inverse addition) afforded the or-butylated ester 
8” as an exclusive product (entry 8). It is notable that addition of (n-BukCu(CN)Li, to 3 without BF;OEt, 
afforded only the reductive decarboxylative elimination product 7” (entry 9). The addition of MeMgBr; BF; 
OE!t, (3 equiv) to the carbonate 4’* in the. presence of Cul(l0 mol %) gave 10 as the only isolated product 
@ntry 10). 

As an application of this methodology, the sex pheromone of the carpenterbeeXylocoopa hirvtissiina, 
14”. was synthesized.” as shown in Scheme 2. The or-alkylated product 12 obtained from 11 by this 
method was converted to the TBDMS ether 12 and compared with the mported value& of the specific optical 
rotation for the enantiomer of 13. To cmfii the absolute configuration at the alkylamd carbon center, the 
compound 13 was transformed to theknown (2.9, 59)~trans-2-methyl-S-hexanolide 14. [oL],*’ -52.8 (c 0.58, 
CHCl,), [lit.]” [c&,~’ 6 -54.1 (c 0.67. CHCI,)]. 

12 
C02Me b iCofie c, d. 

=H 

PlD= + 40.26 [al:* + 29.24 (c 0.73. CHCI,) 
(c 1.13.CHc13 lir.~o]nz6 -30.01 (c 0.559. CHcy 

for rhe enantiomer of 13 

Scheme 2 

Reagents: (a) Me,Cu(CN)Li, (3 equlv); BF; OEt, (3 e&v). THF, -78 “C, 30 rnln (87%). (b) TBDMSCI, imidamle. 
CH& rt. 24 h (78%). (c) H,. Rh/AI,O,. atmosphenic pressure. rt. 24 h. (d) 46% HF. BF;OEt,, CHFN, 0 “C. 6 h 
(65% overall). 

In summary, the reaction of organocopper reagents with cyclic sulfites or carbonates of y,&dihydroxy (E)- 
c$unsaturated ester gave either S,2 ’ product or reductive elimination product depending on reaction 
conditions. The S,2 ’ addition of organocupmtes to cyclic sulfites or carbonates of y,bdihydtoxy (E)-enoates 
described herein Seems to be an efficient synthetic route to functional&d chiml or-alkyl (E)- S ,y -enoates with 
remarkably highly regio-, @)-stereo-. and diastereoseleztivity. 
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